- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0002000000000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Hillaire, Garron (2)
-
Littenberg-Tobias, Joshua (2)
-
Marvez, G. R. (2)
-
O'Brien, Sara (2)
-
Reich, Justin (2)
-
Thompson, Meredith (1)
-
Waldron, Rick (1)
-
Zheng, Tianyuan (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Implementing high-quality professional learning on diversity, equity, and inclusion (DEI) issues is a massive scaling challenge. Integrating dynamic support using natural language processing (NLP) into equity teaching simulations may allow for more responsive, personalized training in this field. In this study, we trained machine learning models on participants’ text responses in an equity teaching simulation (494 users; 988 responses) to detect certain text features related to equity. We then integrated these models into the simulation to provide dynamic supports to users during the simulation. In a pilot study (N = 13), we found users largely thought the feedback was accurate and incorporated the feedback in subsequent simulation responses. Future work will explore replicating these results with larger and more representative samplesmore » « less
-
Hillaire, Garron; Waldron, Rick; Littenberg-Tobias, Joshua; Thompson, Meredith; O'Brien, Sara; Marvez, G. R.; Reich, Justin (, L@S '22: Proceedings of the Ninth ACM Conference on Learning @ Scale)Role-plays of interpersonal interactions are essential to learning across professions, but effective simulations are difficult to create in typical learning management systems. To empower educators and researchers to advance simulation-based pedagogy, we have developed the Digital Clinical Simulation Suite (DCSS, pronounced "decks"), an open-source platform for rehearsing for improvisational interactions. Participants are immersed in vignettes of professional practice through video, images, and text, and they are called upon to improvisationally make difficult decisions through recorded audio and text. Tailored data displays support participant reflection, instructional facilitation, and educational research. DCSS is based on six design principles: 1) Community Adaptation, 2) Masked Technical Complexity, 3) Authenticity of Task, 4) Improvisational Voice, 5) Data Access through "5Rs", and 6) Extensible AI Coaching. These six principles mean that any educator should be able to create a scenario that learners should engage in authentic professional challenges using ordinary computing devices, and learners and educators should have access to data for reflection, facilitation, and development of AI tools for real-time feedback. In this paper, we describe the architecture of DCSS and illustrate its use and efficacy in cases from online courses, colleges of education, and K-12 schools.more » « less
An official website of the United States government
